Eyebee Prep
  • Home
  • IB STUDY MATERIALS
    • Psychology SL/HL >
      • Tips & Guide
      • Biological Approach >
        • Brain and Behaviour
        • Hormones and Pheromones
        • Genetics and Evolution
        • HL Animal Research
      • Sociocultural Approach >
        • Individual and the group
        • Cultural Origins
        • Cultural Influences
        • HL Globalization
      • Cognitive Approach >
        • Cognitive Processing
        • Reliability of Cognitive Processes
        • Emotion and Cognition
        • HL Digital World
      • B. Human Relationships >
        • Personal Relationships
        • Group Dynamics
      • D. Developmental >
        • Developing as a Learner
        • Developing an Identity
      • Studies >
        • Biological Approach
        • Sociocultural Approach
        • Cognitive Approach
        • B. Human Relationships
        • D. Developmental
    • Chemistry SL/HL >
      • Tips & Guide
      • All Vocab Definitions
      • ALL EQUATIONS
      • Unit 1,2 & 12
      • Unit 3 &13
      • Unit 4 &14
      • Unit 5,6,7 & 15,16,17
      • Unit 8 & 18
      • Unit 9 & 19
      • Unit 10 & 20
      • Unit 11 & 21
      • Option D: Medicinal Chemistry >
        • D.1 PHARMACEUTICAL PRODUCTS AND DRUG ACTION
        • D.2 Aspirin and penicillin
        • D.3 Opiates
        • D.4 pH Regulation of the Stomach
        • D.5 Antiviral Medications
        • D.6 Environmental impact of some medications
        • D.7 Taxol- A Chiral Auxiliary Case Study
        • D.8 Nuclear Medicine
        • D.9 Drug Detection and Analysis
    • Biology SL >
      • Tips & Guides
      • TOPIC 1: CELL BIOLOGY >
        • 1.1 Introduction to cells
        • 1.2 Ultrastructure of Cells
        • 1.3 Membrane Structure
        • 1.4 Membrane Transport
        • 1.5 Origin of Cells
        • 1.6 Cell Division
      • TOPIC 2: MOLECULAR BIOLOGY >
        • 2.1 Molecules to metabolism
        • 2.2 Water
        • 2.3 Carbohydrates and Lipids
        • 2.4 Proteins
        • 2.5 Enzymes
        • 2.6 Structure of DNA and RNA
        • 2.7 DNA Replications, Transcription and Translation
        • 2.8 Cell Respiration
        • 2.9 Photosynthesis
      • Topic 3: Genetics >
        • 3.1 Genes
        • 3.2 Chromosomes
        • 3.3 Meiosis
        • 3.4 Inheritance
        • 3.5 Genetic Modification and Biotechnology
      • Topic 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2 Energy Flow
        • 4.3 Carbon Cycling
        • 4.4 Climate Change
      • Topic 5: Evolution and Biodiversity >
        • 5.1 Evidence for evolution
        • 5.2 Natural Selection
        • 5.3 Classification and Biodiversity
        • 5.4 Cladistics
      • Topic 6: Human Physiology >
        • 6.1 Digestive System
        • 6.2 The blood system
        • 6.3 Defense against infectious disease
        • 6.4 Gas Exchange
        • 6.5 Neurons and Synapses
        • 6.6 Hormones, Homeostasis and Reproduction
    • Physics SL >
      • Must-have Resources
      • Full Study Resources
      • Other Resources
      • Tips & Guide
      • IA, Lab Report
      • Topic 1: Measurements & Uncertainties
      • TOPIC 2: MECHANICS
      • TOPIC ​3: THERMAL PHYSICS
      • Topic 4: Waves
      • Topic 5: Electricity & Magnetism
      • Topic 6: Circular Motion & Gravitation
      • Topic 7: Atomic, Nuclear, & Particle Physics
      • Topic 8: Energy Production
      • Option D: Astrophysics
    • Geography SL/HL >
      • Tips & guide
      • Unit 1: Changing population
      • Unit 2: Global climate—vulnerability and resilience
      • Unit 3: Global resource consumption and security
      • Unit 4: Power, Places and Networks
      • Unit 5: Human Development and Diversity
      • Unit 6: Global Risks and Resillience
      • Option A: Freshwater
      • Option B: Ocean and Coastal Margins
      • Option C: Extreme Environments
      • Option E: Leisure, tourism and sport
    • Business SL/HL(pending) >
      • Tips & guides
      • Unit 1: Business Organization and Movement >
        • 1.1 Nature of Business
        • 1.2 Types of Organizations
        • 1.3 Organizational objectives
        • 1.4 Stakeholders
        • 1.5 External Environment
        • 1.6 Growth and evolution
      • Unit 2: Human Resource Management >
        • 2.1 The functions and evolution of human resource management
        • 2.2 Organizational structure
        • 2.3 Leadership and management
        • 2.4 Motivation
      • Unit 3: Finance and Accounts >
        • 3.1 Sources of Finance
        • 3.2 Costs and Revenues
        • 3.3 Break-even analysis
        • 3.4 Final accounts
        • 3.5 Profitability and liquidity ratio analysis
        • 3.7 cash flow
      • Unit 4: Marketing >
        • 4.1 The role of marketing
        • 4.2 Marketing Planning
        • 4.4 Market Research
        • 4.5 The four ps
        • 4.8 E-commerce
      • Unit 5: Operations Management >
        • 5.1 The role of operations Management
        • 5.2 Production methods
        • 5.4 Locations
    • Economics SL/HL (pending) >
      • Tips & guides
      • MICROECONOMICS >
        • 1.1 Competitive Markets: Demand and Supply
      • macroeconomics
    • Chinese B SL >
      • Oral Example
    • Extended Essay (EE) >
      • General Tips
      • Physics EE
    • Internal Assessment (IA) >
      • General Tips
    • Theory of Knowledge >
      • Essay Example
      • Presentation Example
    • Other notes >
      • Topic 1: Measurements and Uncertainties
      • Topic 2: Mechanics
      • Topic 3: Thermal Physics
      • Topic 4: Waves
      • Topic 5: Electricity and Magnetism
      • Topic 6: Circular Motion and Gravitation
      • Topic 7: Atomic, Nuclear and Particle Physics
      • Topic 8: Energy Production
      • Option D: Astrophysics
    • Other Citations
  • UNI application
    • United States
    • United Kingdom >
      • Academic Schools
      • Art & Design Schools
    • China
    • Japan
    • Hong Kong
    • Canada (pending)
    • Australia (pending)
  • our warm advice
    • academic advice!
    • Toxic Productivity
    • Finding Your Balance
    • Giving Up
    • YOLO?
    • Are grades important
    • Danger of Quotes
    • How to Destress
  • About us

6.3 Defense against infectious disease 

6.3 Syllabus
Picture
Paragraph. 편집하려면 여기를 클릭하세요.

U1. ​The skin and mucous membranes form a primary defense against pathogens that cause infectious disease.

  • Skin and mucous membrane are physical barriers against infection from pathogens
  • Skin is constantly replacing its outermost epidermal layer of skin. These dead cells provide effective protection against foreign pathogens
  • Skin also secretes a substance called sebum to lubricate the skin. The sebum also lowers the pH of the skin, which effectively helps inhibit bacterial growth
  • Mucous membranes line the surfaces of the nasal cavity, trachea, bronchi, and bronchioles (surfaces that are exposed to the outside environment) 
  • Mucous traps foreign particles and pathogens contained in the air before they reach the lungs
  • Mucous contains lysozymes that can damage and kill pathogens
  • Trapped pathogens can also be expelled through the mouth or nose, or swallowed and destroyed by the high acidity of the stomach
  • Skin and mucous membranes are examples of non-specific immunity 
​

U2. ​Cuts in the skin are sealed by blood clotting.

  • Blood clotting is the process in which cuts or broken blood vessels are repaired and sealed to prevent excessive blood loss
  • When a blood vessel is broken or cut, blood platelets collect at the site of the damaged blood vessel forming a platelet plug
​

U3. Clotting factors are released from platelets.

  • The platelets and the damaged tissue release chemical factors called clotting factors 
​

U4. The cascade results in the rapid conversion of fibrinogen to fibrin by thrombrin.

  • The clotting factors convert the clotting protein prothrombin to its active form thrombin (enzyme)
  • The enzyme thrombin converts clotting protein fibrinogen into the insoluble fibrous protein fibrin
  • Fibrin forms a mesh at the point of the broken vessel further trapping other platelets sealing up the damaged vessel and forming a stable clot
  • Once the damaged vessel has fully healed, the blood clot dissolves in the blood
​

U5. ​Ingestion of pathogens by phagocytic white blood cells gives non-specific immunity to diseases.

  • Another type of non-specific immunity (not antigen specific and response is immediate) occurs when phagocytic leucocytes ingest and destroy foreign pathogens
  • The main type of phagocytic leucocytes are called macrophages. When pathogens get past the physical barriers, macrophages will engulf foreign pathogens through endocytosis
  • Pathogens are recognized as non-self cells by the structure of their protein coat
  • Once the pathogen is engulfed, lysosomes within the macrophage contain hydrolytic enzymes that will digest and destroy the foreign pathogens
  • Macrophages are the large white blood cell and involved in no-specific immune response. 
​

U6. Production of antibodies by lymphocytes in response to particular pathogens gives specific immunity.

  • When a pathogen enters the blood, the specific antigen on the surface of the membrane is identified as being foreign or non-self
  • This stimulates a specific immune response in which antibodies are produced that are specific for that particular antigen
  • B-lymphocytes are white blood cells that produce antibodies that bind to the antigen on the invading pathogen
  • Each lymphocyte is able to produce one type of antibody; however, we have a vast diversity of lymphocytes that are able to respond to millions of foreign antigens. 
  • Once an antigen has been encountered the B-lymphocytes are stimulated to divide to produce a large amounts of clones of themselves. 
  • The active B-lymphocytes that are produced are called plasma cells which will begin to produce antibodies
  • The plasma cells created, produce and release mass amounts of anitbodies into the bloodstream. 
  • These antibodies surround and bind to the antigens on the foreign pathogens
  • Through a variety of different methods of pathogens are destroyed by the antibodies and other white blood cells. 
​

Some lymphocytes act as memory cells and can quickly reproduce to form a clone of plasma cells if a pathogen carrying a specific antigen is re-encountered. 

  • Some of these divisions also produce B-cells called memory cells, which stay in the blood in case of a second infection to provide a quick response to the new infection
  • The primary response is the production of antibodies to the initial challenge by the invading antigen. 
  • The secondary response which is much quicker because memory cells are still in the blood occurs after a subsequent challenge y the same antigen. 

-Antigens
  • Chemicals that induce an immune response inside the body
  • Antigens are actually proteins, glycoproteins or other macromolecules on the surface of the cell membrane of the pathogen that are recognized by a specific antibody, to stimulate the immune response

-Antibodies
  • Protein molecules produced by B-lymphocytes that recognize and bind to the antigens on the foreign pathogens
  • Each antibody is specific to each type of antigen
  • Antibodies make the pathogen more recognizable to macrophages so that they are easily engulfed and destroyed
  • Antibodies also stop viruses from spreading by binding to host cells preventing the viruses from entering 
​

U7. ​ANTIBIOTIC BLOCKS PROCESSES THAT OCCUR IN PROKARYOTIC CELLS BUT NOT IN EUKARYOTIC CELLS.

  • Antibiotics are a type of drug or chemical that inhibits the growth of microorganisms; mainly bacteria
  • Antibiotics block cellular processes such as DNA replication, transcription, translation, and cell wall formation
  • The first antibiotic discovered was identified as penicillin.
​

U8. Some strains of bacteria have evolved with genes that confer resistance to antibiotics and some strains of bacteria have multiple resistance.

  • Some viruses lack their own metabolism, they have to use the chemical processes of a cell from a host that they infect
  • They are unable to reproduce on their own and cannot perform protein synthesis, transcription and other metabolic functions
  • Antibiotics work by blocking these vital processes in bacteria, killing the bacteria, or stopping them from multiplying
  • Since viruses do not perform their own metabolic reactions antibiotics such as penicillin and streptomycin, are ineffective in treating viral infections. 
  • Therefore treating viruses with antibiotics is not only useless and ineffective, it can also create antibiotic resistance in bacteria strains. 
​

A3. ​Effects of HIV on the immune system and methods of transmission

  • HIV is a retrovirus that causes AIDS, which is a condition in humans where the immune system fails and is susceptible to life-threatening opportunistic infections
  • HIV targets helper- T cells because HIV can bind to proteins on the T cells
  • Helper- T cells play an important role in the production of clonal B lymphocyte cells, which produce antibodies for immune response
  • Therefore the reduction of T cells will reduce the amount of antibodies produced needed to fight off infection from invading pathogens
  • This inability to fight off disease is what eventually causes the person to die
​
Proudly powered by Weebly
  • Home
  • IB STUDY MATERIALS
    • Psychology SL/HL >
      • Tips & Guide
      • Biological Approach >
        • Brain and Behaviour
        • Hormones and Pheromones
        • Genetics and Evolution
        • HL Animal Research
      • Sociocultural Approach >
        • Individual and the group
        • Cultural Origins
        • Cultural Influences
        • HL Globalization
      • Cognitive Approach >
        • Cognitive Processing
        • Reliability of Cognitive Processes
        • Emotion and Cognition
        • HL Digital World
      • B. Human Relationships >
        • Personal Relationships
        • Group Dynamics
      • D. Developmental >
        • Developing as a Learner
        • Developing an Identity
      • Studies >
        • Biological Approach
        • Sociocultural Approach
        • Cognitive Approach
        • B. Human Relationships
        • D. Developmental
    • Chemistry SL/HL >
      • Tips & Guide
      • All Vocab Definitions
      • ALL EQUATIONS
      • Unit 1,2 & 12
      • Unit 3 &13
      • Unit 4 &14
      • Unit 5,6,7 & 15,16,17
      • Unit 8 & 18
      • Unit 9 & 19
      • Unit 10 & 20
      • Unit 11 & 21
      • Option D: Medicinal Chemistry >
        • D.1 PHARMACEUTICAL PRODUCTS AND DRUG ACTION
        • D.2 Aspirin and penicillin
        • D.3 Opiates
        • D.4 pH Regulation of the Stomach
        • D.5 Antiviral Medications
        • D.6 Environmental impact of some medications
        • D.7 Taxol- A Chiral Auxiliary Case Study
        • D.8 Nuclear Medicine
        • D.9 Drug Detection and Analysis
    • Biology SL >
      • Tips & Guides
      • TOPIC 1: CELL BIOLOGY >
        • 1.1 Introduction to cells
        • 1.2 Ultrastructure of Cells
        • 1.3 Membrane Structure
        • 1.4 Membrane Transport
        • 1.5 Origin of Cells
        • 1.6 Cell Division
      • TOPIC 2: MOLECULAR BIOLOGY >
        • 2.1 Molecules to metabolism
        • 2.2 Water
        • 2.3 Carbohydrates and Lipids
        • 2.4 Proteins
        • 2.5 Enzymes
        • 2.6 Structure of DNA and RNA
        • 2.7 DNA Replications, Transcription and Translation
        • 2.8 Cell Respiration
        • 2.9 Photosynthesis
      • Topic 3: Genetics >
        • 3.1 Genes
        • 3.2 Chromosomes
        • 3.3 Meiosis
        • 3.4 Inheritance
        • 3.5 Genetic Modification and Biotechnology
      • Topic 4: Ecology >
        • 4.1: Species, Communities and Ecosystems
        • 4.2 Energy Flow
        • 4.3 Carbon Cycling
        • 4.4 Climate Change
      • Topic 5: Evolution and Biodiversity >
        • 5.1 Evidence for evolution
        • 5.2 Natural Selection
        • 5.3 Classification and Biodiversity
        • 5.4 Cladistics
      • Topic 6: Human Physiology >
        • 6.1 Digestive System
        • 6.2 The blood system
        • 6.3 Defense against infectious disease
        • 6.4 Gas Exchange
        • 6.5 Neurons and Synapses
        • 6.6 Hormones, Homeostasis and Reproduction
    • Physics SL >
      • Must-have Resources
      • Full Study Resources
      • Other Resources
      • Tips & Guide
      • IA, Lab Report
      • Topic 1: Measurements & Uncertainties
      • TOPIC 2: MECHANICS
      • TOPIC ​3: THERMAL PHYSICS
      • Topic 4: Waves
      • Topic 5: Electricity & Magnetism
      • Topic 6: Circular Motion & Gravitation
      • Topic 7: Atomic, Nuclear, & Particle Physics
      • Topic 8: Energy Production
      • Option D: Astrophysics
    • Geography SL/HL >
      • Tips & guide
      • Unit 1: Changing population
      • Unit 2: Global climate—vulnerability and resilience
      • Unit 3: Global resource consumption and security
      • Unit 4: Power, Places and Networks
      • Unit 5: Human Development and Diversity
      • Unit 6: Global Risks and Resillience
      • Option A: Freshwater
      • Option B: Ocean and Coastal Margins
      • Option C: Extreme Environments
      • Option E: Leisure, tourism and sport
    • Business SL/HL(pending) >
      • Tips & guides
      • Unit 1: Business Organization and Movement >
        • 1.1 Nature of Business
        • 1.2 Types of Organizations
        • 1.3 Organizational objectives
        • 1.4 Stakeholders
        • 1.5 External Environment
        • 1.6 Growth and evolution
      • Unit 2: Human Resource Management >
        • 2.1 The functions and evolution of human resource management
        • 2.2 Organizational structure
        • 2.3 Leadership and management
        • 2.4 Motivation
      • Unit 3: Finance and Accounts >
        • 3.1 Sources of Finance
        • 3.2 Costs and Revenues
        • 3.3 Break-even analysis
        • 3.4 Final accounts
        • 3.5 Profitability and liquidity ratio analysis
        • 3.7 cash flow
      • Unit 4: Marketing >
        • 4.1 The role of marketing
        • 4.2 Marketing Planning
        • 4.4 Market Research
        • 4.5 The four ps
        • 4.8 E-commerce
      • Unit 5: Operations Management >
        • 5.1 The role of operations Management
        • 5.2 Production methods
        • 5.4 Locations
    • Economics SL/HL (pending) >
      • Tips & guides
      • MICROECONOMICS >
        • 1.1 Competitive Markets: Demand and Supply
      • macroeconomics
    • Chinese B SL >
      • Oral Example
    • Extended Essay (EE) >
      • General Tips
      • Physics EE
    • Internal Assessment (IA) >
      • General Tips
    • Theory of Knowledge >
      • Essay Example
      • Presentation Example
    • Other notes >
      • Topic 1: Measurements and Uncertainties
      • Topic 2: Mechanics
      • Topic 3: Thermal Physics
      • Topic 4: Waves
      • Topic 5: Electricity and Magnetism
      • Topic 6: Circular Motion and Gravitation
      • Topic 7: Atomic, Nuclear and Particle Physics
      • Topic 8: Energy Production
      • Option D: Astrophysics
    • Other Citations
  • UNI application
    • United States
    • United Kingdom >
      • Academic Schools
      • Art & Design Schools
    • China
    • Japan
    • Hong Kong
    • Canada (pending)
    • Australia (pending)
  • our warm advice
    • academic advice!
    • Toxic Productivity
    • Finding Your Balance
    • Giving Up
    • YOLO?
    • Are grades important
    • Danger of Quotes
    • How to Destress
  • About us